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This paper presents the ultrasonic measurements of the elastic constants of RbCl, RbBr, and RbI as a
function of pressure up to approximately 4 kbars in the temperature range of 120° to 300°K. The reduction
of the raw data is analyzed according to the self-consistent method suggested by Cook and is discussed at
length so as to clarify the limitations as well as the precision of the final results presented in this paper. The
results of adiabatic as well as the isothermal values of the elastic-constant measurements at pressure are
given together. Pressure derivatives of the elastic constants of the above salts under different thermo-
dynamic conditions are calculated and are given separately. Finally the Cauchy relation and anisotropy

are discussed,

INTRODUCTION

The elastic constants of solids, correlated with other
physical properties, provide a valuable insight into the
nature of atomic binding forces. The second-order
elastic constants and their pressure dependence pro-
vide convenient tests of the theories of cohesion and
provide information about the general equation of
state, and often have applications in geophysics and
in shockwave experiments. The strain derivatives of
the second-order elastic constants are related to the
higher-order elastic constants which in turn are related
to the anharmonicity of the lattice.

EXPERIMENTAL PROCEDURE

The RbCl, RbBr, and RbI crystals were bought
from Semielements Inc. These crystals had been cut
in the shape of half-inch cubes with orientations of
(001), (110), or (111) (within 2°). The rubidium
halide specimens from these crystals were prepared

- (i) by reducing the orientation uncertainty to less

than +0.4°) (ii) by making the faces normal to this
new orientation flat and parallel within 41/, and (iii)
by polishing these opposing faces. The methods by
which the orientation uncertainties were reduced, etc.,
have been described elsewhere.! The specimen thick-
nesses were measured to an accuracy of 40.00025 cm.

Wayve velocities in the specimens were measured by
the ultrasonic-interferometry method originally de-
veloped by Williams and Lamb? and subsequently
modified by Colvin.? The method requires that a speci-
men is acoustically coupled to a transducer by a
suitable cement. In the present work the specimens
were coupled to quartz transducers of 10-MHz resonant
frequency and 1.016 cm in diam with coaxial gold-
coated electrodes. At temperatures below 300°K Nonag
stopcock grease served as cement. At 300°K Salol was
used as the bonding agent. The maximum thickness
of the bonding material was less than the margin of
error in the measurement of the widths of the speci-
mens, i.e., £0.00025 cm.

In the ultrasonic interferometry method, two phase-
coherent rf pulses are sent in succession through the
specimen. Each of these pulses generates its own
train of echoes. These two echo trains are brought
into temporal coincidence by varying the time delay
between the two exciting pulses until destructive inter-
ference occurs as it does at certain discrete frequencies.
These null frequencies were measured on a calibrated
Beckman Universal Eput and Timer 8370A.

The physical arrangement used for the study of
variation in the elastic constants of the three rubidium
halides as a function of pressure and temperature is
described in Refs. 1 and 4. However, in place of the
manganin gauge used by previous researchers the pres-
sure was measured on a calibrated Bourdon gauge and
the temperature was measured by a copper—constantan
thermocouple. Helium and argon were used as the
pressure transmitting media. With this equipment the
pressure could be held within =45 bars and the absolute
accuracy of the temperature measurement was esti-
mated to be +=1°K.

We have in most cases measured four velocities since
four specimens could be placed in the pressure vessel
at the same time. In addition we have replicated a
few experimental runs. Thus, we have made more than
the minimally required number of independent velocity
measurements to understand the elastic properties of
cubic crystals. This permits an evaluation of the quality
of measurements taken and hence of the validity of
the results obtained from such measurements.

In general, null-frequency data was collected in the
following way. The pressure bomb containing four speci-
mens of one of the halides was allowed to attain
thermal equilibrium at a specific temperature and pres-
sure before any frequencies were recorded. Each such
measurement consisted of recording five to six null
frequencies for each velocity mode around the resonant
frequency of the transducer. After measurement the
pressure was raised slowly to a higher pressure and the
system was allowed to come to thermal equilibrium
before the next set of measurements was made. The
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thermal equilibrium of the system at a specific pressure
and temperature was inferred from the absence of drift
in the value of a null frequency. The null-frequency
measurements could be easily replicated within 0.5
kHz. Most of the measurements, at a specific tempera-
ture, were made in steps of 200 to 250 bars.

METHOD OF ANALYSIS OF NULL
FREQUENCY DATA

A single transducer is used here both as the trans-
mitter and the receiver of a signal in the ultrasonic-
interferometer of Williams and Lamb.? For destructive
interference the phase difference between oscillations
making up the two pulses must be an odd number
times 7 radians. The difference in path comes from
the fact that the first pulse makes one extra round
trip and gets reflected one extra time at both sample
surfaces. Hence

(2nfn)2r—¢p—7= (2n—1) . (1)

Here f, is the oscillator frequency at which the nth
null occurs, and 27 is the round-trip transit time of the
pulse in the sample. The angle ¢ is the phase shift on
reflection at the specimen surface which has a trans-
ducer and = is the phase shist at the free sample surface.

¢ and 7 must be known, and the main problem is
that of determining ¢ and n. This is accomplished by
showing that ¢, as a function of frequency f, is nearly
linear near the resonant frequency, fo, of the trans-
ducer and the coupling film is assumed to have zero
thickness.

The approximate values of ¢ in this case is given as®?

¢=m{1=2[(fa=/0)/[o](Zx/Zs)}, (2)

where Zy, the transducer impedance, is equal to the
density multiplied by the sound velocity in the trans-
ducer and Zs, the specimen impedance, is equal to
the product of density times the sound velocity of the
specimen. The evaluation of # is accomplished by com-
bining Egs. (1) and (2). Using the results for #» and
n+1, one can express the frequency difference Af,=
faus1—f» between points of complete interference and
again with Eq. (2), obtain the relation

n=( fa/Afs) —(Z1/Zs) —0.5. (3)
Solving Eq. (1) for 27 we get

2r=[(n+0.3)/ful— (Z2/Zs)[(fa—fo) /fa fo] (4

From 7 the velocity can finally be found
v=L/r, ()

where L is the length of the specimen. From Eq. (4)
it is evident that the effect of Zy/Zs on 7 becomes
negligible near fp; a transit time obtained near f, will
not suffer from the effect of inaccurate knowledge of
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Zy/Zs. The values of the resonant frequency of the
transducer, f, and the impedance of quartz at pressure
at specific pressure and temperature are obtained from
the work of McSkimin and Andereatch.®

Cook’s” analysis of ultrasonic data is used in our
calculation to measure the first pressure derivative of
elastic constants of cubic crystals.

We have for the isothermal bulk modulus

BT'=—V(dP/dV)p=—3%L(dP/dL)r

=p(dP/3p)r=3\(8P/ON)r, (6)

where V is the volume, 7 is the temperature, L is
length, p is density, and P is the pressure and

A=L(P=0)/L(P), (7)

here L(P=0) and L(P) are the length of the sample
at pressure equal to zero and P, respectively. From
thermodynamics the adiabatic bulk modulus is given by

BS=B"(1+4), (8)
where

A=B2BST/pCp. (9)

Here (3 is the volume-expansion coefficient and Cp is
the heat capacity. Ultrasonically we have

CuS=pV=p[ L*(P)/m*(P)]
=p[ L}(P=0)/m*(P) ]\, (10)

where pp is the density at zero pressure and 71(P) is
the transit time at pressure equal to . We have

C'=(Cu5—Cx®) /2,

CS=C"T=p[ L*(P=0)/m*(P) ]\ (11)
We can write i
Bs= C11S—'§'C'
| LA R=0) Gl L P =)
ot o L
Using Egs. (6), (8), and (12) we obtain
LA (P=0) 4 LHP=0)\. ., (OP
( n(P) 3 m(P) )X”‘)‘ (ax )T (e
and after integration we have
A=14(3po)
" (14-A)dP
a3
X, oo

Since we know py, Li(P=0) and L;(P=0) from zero
pressure measurements and we measure 71(P) and 72(P)
at P we would have \(P) at a given temperature if
we had A(P) at that same temperature. Cook assumed
at this point that A(P) is constant and may be ap-
proximately given by its value at one atmosphere. Ho




